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SUMMARY 
Finite element analysis, applied to computational fluid dynamics (CFD) problem classes, presents a formal 
procedure for establishing the ingredients of a discrete approximation numerical solution algorithm. A 
classical Galerkin weak-statement formulation, formed on a Taylor series extension of the conservation law 
system, is developed herein that embeds a set of parameters eligible for constraint according to specification 
of suitable norms. The derived family of Taylor weak statements is shown to contain, as special cases, over one 
dozen independently derived CFD algorithms published over the past several decades for the high speed flow 
problem class. A theoretical analysis is completed that facilitates direct qualitative comparisons. Numerical 
results for definitive linear and non-linear test problems permit direct quantitative performance comparisons. 
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INTRODUCTION 

Research on finite element analysis in computational fluid dynamics (CFD) over the past decade 
has focused on derivation and definition of suitable weak statements for the Navier-Stokes 
equations for high speed flow. The Navier-Stokes CFD problem class is characterized by large 
Reynolds (Peclet) number, so that the resulting equation system approximates (over a large portion 
of the solution domain) the inviscid hyperbolic conservation law system termed the Euler 
equations. The earliest finite element developments include those of Wahlbin,' DendyZ and 
Raymond and Garder3 for linear scalar first-order hyperbolics. The family of Petrov-Galerkin 
algorithms followed,4-6 as well as the penalty-Galerkin algorithm of Baker and Soliman' and the 
characteristic-Galerkin method.' In every instance, for a given space of trial functions, a non- 
Galerkin test space was identified that yielded a dissipative modification to the parent Galerkin 
algorithm. Invariably, one of the additional terms thus generated involved a second spatial 
derivative that yielded an 'artificial viscosity' term, with the action of smoothing the short 
wavelength dispersion error inherent in approximate solutions of the Euler equations. 

Of importance to the current development, and in formulational distinction to those previously 
cited algorithms, Doneag developed the 'Taylor-Galerkin' algorithm wherein the weak statement 
was formed on a Taylor series expansion of the unsteady equation, with higher-order derivatives 
re-expressed in terms of derivatives of the flux vector of the first-order hyperbolic conservation law 
(system). The interchanging of weak statement and Taylor series immediately generated 
perspective into independently derived finite element CFD algorithms for problem classes ranging 
from transonic potential flow to high-speed Navier-Stokes." 

The richness of this formulational procedure is expanded herein to derive and evaluate a 
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generalized family of finite element CFD algorithms using the classical Galerkin test space 
constraint applied to a Taylor weak statement for first-order hyperbolics. The developed algorithp 
is verified to contain as special cases over a dozen independently derived finite difference and finite 
element algorithms. Definitive steady and unsteady, linear and non-linear model problem test 
cases are solved to critically compare the relative performances of these algorithms, in concert with 
a complete linearized theoretical analysis for qualitative comparisons. 

PROBLEM STATEMENT 

Hyperbolic Conservation law system 

Consider the homogeneous hyperbolic conservation law system 

a f j  - a f ( 4  - L(q) = - + - - - + - = qr + f ,  = 0, 
at axj at a x  

where boldface indicates a vector field. In equation ( l ) ,  x spans the appropriate n-dimensional 
region of R" and contains the elements xi, 1 < j  < n, and the solution domain is R c 88" x (to, t) .  The 
elements of q(x, t )  are the dependent variables, and f ( q )  is the flux vector. For the CFD problem 
class of interest, the Euler equations have the definitions 

where p is density, pu, is the momentum vector, pe is total internal energy, p is pressure and 6 ,  is the 
Kronecker delta. For a polytropic perfect gas, the equation of state is p = (y  - 1)[pe - (1/2)pujuj]. 

For the Euler equations, f is a homogeneous function of degree one in q with a similarity 
transformation that simultaneously diagonalizes the flux vector Jacobian matrix A, i.e. 

a4 
axj l a x j  

f ,  = afi = A .- = [Alq, = [S] [A] [ S ] - ' q , .  (3) 

In one dimension, for example, j =  1 and the elements of the diagonal matrix [A] are 
1, = {ul, u1 + a,, u1 - ao}, where a, is the sound speed. The multidimensional definitions for 
[A] have been reported by Hughes and Tezduyar." 

The Taylor weak-statement 

The construction of a finite element weak-statement discrete approximate solution to 
equation ( 1 )  involves identification of a finite dimensional subspace Sh c H' from which the trial 
functions for qh(x, t )  may be extracted, and a subspace Vh c HA for the test functions uh(x), which 
are arbitrary. The direct extension of finite element methods developed for elliptic boundary value 
problems defines qh and uh to be identical, yielding the so called (Bubnov-)Galerkin weak 
statement 

v h y q h )  = 0, for all u h E  P. (4) 

For an unsteady problem, the usual assumption for qh(.) is that space and time are separable; hence 
equation (4) yields an ordinary differential equation system written on the time-derivatives of 
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qh(x, t) at the nodes {X} of the discretization u f i h  c R". Thus, the Galerkin weak statement, 
equation (4), provides the data needed to evaluate a discrete Taylor series for expressing the 
temporal evolution of the nodal variable array {Q(t)}. 

The cited family of Petrov-Galerkin CFD algorithms, developed to embed stability mechan- 
isms for convection-dominated flows, are principally distinguished by alternative definitions for 
the weak-statement test space vh(x). In direct distinction, the Taylor weak statement developed 
herein as a generalization of the development of Doneay interchanges the formulational order of 
the weak statement and Taylor series and then employs identical trial and test spaces. Since 
equation (1) defines an evolutionary process, there must exist the Taylor series 

qn+l  = 4" + Atq: + (1/2)At24:, + iAt3q:tt + --., ( 5 )  

where the subscripts t denote the order of temporal derivative at t,,, and t,+l = t, + At. 

The first term is 
Equation (1) allows restatement of the temporal derivatives in equation (5),  using equation (3). 

(6) qt= - f  = -f,q,= - A q  = - A , -  a4 
' a x j *  

where A is the Jacobian of the flux vector f, with scalar components A j ,  1 < j < n, and the last 
form in equation (6) employs the repeated index tensor summation convention for clarity. The 
second term in equation (3) becomes 

Hence, qtt is eligible for replacement using a linear combination of the last two forms; thus, for 
- & + B = l ,  

Proceeding through similar arguments, the third derivative is expressible as the linear combination 

The coefficients &, f l  and 7, j form convex sums; their definition ultimately reflects choices 
in the specific algorithm final functional form. For example, Doneag defines & = 0 = p for the 
original Taylor-Galcrkin algorithm. Inserting equations (6)-(8) into equation (5), and collecting 
terms yields 

1 7 [ A.A- - -+ - (A jA , )  ,ax, ax, 
+-- a a  

qr 
@ + I  -4" 

At 

A . A  kax, - + - ( A A  a a  ax, j k ) ] E r *  (9) 

The left side of equation (9) expresses the discrete approximation to 4,. Proceeding to the limit 
as At + 0, but retaining the two higher-order terms yields the (non-discrete) modified conservation 
law statement as 
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+---- afi  At a [ FA.-+-- -  a f k  j A t  a ( A . A  - a f l ) ]  + * * - = O .  
axi 2 axj .laxk 3 ax, k a x ,  

Equation (10) is the conservation law form desired for construction of the Taylor weak 
statement, wherein At does not vanish. It is interesting to note that equation (10) can be satisfied 
identically by the exact solution to equation (1) by relaxing the convex constraints so that Cr = F 
and 7 = p. Of course, equation (9) no longer represents an exact Taylor series, but we will verify that 
this choice constitutes a published algorithm. Finally, equation (10) can also be written in a form 
devoid off as 

a 
Jaxi axj ij[ dax, ] &I Lw(q)=qq,+ A.--At-[~crAjq,]  - A t 2 -  YAj- (Akq, )  

for the definitions 

where Cr, F, 7 and p remain specificable through the original definitions. 
Constructing the weak statement for the Taylor series (1 1) follows the standard finite element 

procedures. From Sh c H", m 2 1, select the elements Yj(x)eSh to construct the approximation 
qh(X, t )  as 

q(X, t )  w q h ( X ,  t )  = 1 Q j ( t ) y j ( X ) -  

u(x) W u"x) = 1 VjYj(X). 

(13) 
i 

Similarly, from the subspace V h  c H" establish the test function approximation, 

(14) 
j 

Then form the (Galerkin) finite element approximation to the weak statement, equation (4), for the 
Taylor series (1 l), as 

JR uh(x)Lw(qh)dx = 0, for all uh€Vh.  (15) 

Substituting equation (1  l), projecting the exterior x derivatives onto uh, accounting for arbitrary Vj 
and denoting a column matrix as { } produces the 'Taylor weak statement': 
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Linear algebra statement 

Any suitable selection for Yj(x) permits evaluation of the integrals in equation (16). Through the 
appearance of q: equation (16) is a first-order ordinary differential equation system written on the 
expansion coefficient set {Q}, defined in equation (13), of the form 

(17) 4 Q I  [Mi( 1 1 - x  + CM2( 11 {Q) + { b }  = (0). 

The square matrices M ,  ( ) and M 2 (  ) are functions of u, . . . , p, At and Ah, as formed for the 
specific Yj(x) definition and { b }  contains any data. The evolution of {Q} is determined using a 
discrete Taylor series; for example, the family of simple one-step procedures is 

{Q}"" = {Q}" + At( 8 d{Q}"+l dt 

where 0 < 8 < 1 is the parameter defining the implicitness of the derivative evaluation. Substituting 
equation (17) for the derivatives in equation (18), and clearing through produces the Taylor weak 
statement algorithm linear algebra statement 

{~}=CMiI({Q}"+'-{Q}")+At~(C~2( ) l { Q )  + {b)Y'+' 

+ A t ( 1 -  W C M 2 (  11 {Q) + {b)Y'. (19) 

(20) 

The Newton iterative solution algorithm for equation (19) is 

[ J ] ~ " { S Q } ~ ~ :  = - { F  1%' , 
where p is the iteration index, {SQ},, = {Q},+ - {Q}, and the Newton Jacobian is defined as 

THEORETICAL ANALYSIS 

Linear trial space implementation 

The Taylor weak statement, equation (16), and the terminal linear algebra statement, 
equation (19), contain arbitrariness regarding the definition of the trial space Yj(x), the 
parameters a, p, y, p and At through the Taylor series conservation law restatement, and the 
integration algorithm implicitness parameter 8. Therefore, a theoretical analysis is required to 
establish appropriate values of these data upon definition of suitable norms. The developed 
procedure is a Fourier analysis of the fully discrete statement, equation (19), for the simplest 
definition of Yj(x) in one dimension for a linearized, scalar equation. Thus, for this analysis, 
equation (1) takes the form 
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41 + f, 41 + aqx = 0 (22) 
hence A j  = A, 3 a in equation (16). For, equation (13), the simplest trial space is the union of 
piecewise linear monomials. Expressed in terms of the linear cardinal basis { N , ( [ ) } ,  

(23) d x ,  t) x qh(X, t )  = 1 Qj(t)yj(x) = U {N1(C)}T{Q(t)}e 
i e 

for any discretization of 0 c R’. For reference, 

where he is the element measure and 2 is a local Cartesian co-ordinate. 
For these restrictions, the Taylor weak statement, equation (16), takes the specific form 

+ At In. a{N}x(a{NIT{Q}k + Ba{N}T{Q)e)dx 

+ At2 1. a { N } x ( ~ a { N } ~ { Q ) b  + paZ {N):{Q}e)xd~]- (25) 

In equation (25), the assembly operator S,  signifies the familiar row-wise matrix addition 
projecting element data into the global matrix statement, { Q}; = d { Q},/dt, and the surface 
integrals in equation (16) are assumed to assemble to zero contributions. For the scalar flux vector 
Jacobian (a) assumed constant, all but the last term in equation (25) can be directly evaluated 
using {N,}. Hence, define the generic element matrices 

with the conventional names ‘mass matrix’ (Me),  ‘convection matrix’ (C,) and its transpose (CT), 
and ‘diffusion matrix’ (De). 

The last term in equation (25) involves too many derivatives to be supported by test and trial 
spaces constructed using { N,}. Increasing the test space degree to quadratic, an additional 
integration by parts can be performed yielding an evaluable expression. Alternatively, the new 
elemental dependent variable {AQ}, can be defined to account for one x-derivative. Both 
procedures yield the same ‘upwind’ element formula (see Appendix I) upon assembly over a 
sufficient number of adjacent elements of uniform measure he = h. The resultant form prompts the 
definition 
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Se(Ee)  E ~ e (  h: 1. { ~ > x  { N J L ~ ~ )  = * 

1 - 1  
' h [ - ;  -; 3, a>O, 

1 - 1  (27) 
h [ i -; -;I, a<0.  

\ 

The Fourier analysis is facilitated by assembling each term in equation (28) over the generic 
pair of finite element domains sharing the common node xi. It is easy to show that, for a uniform 
discretization, 

where Ao, dz and d2A, are the second-order finite difference equivalents of first and second and 
the upwind third spatial derivatives. In terms of these operators, and for the Courant number 
definition c = aAt/h, equation (28) can be written in the finite difference recursion relation form 

(30) 
dQ. c 

Equation (30) provides the specific restricted form of equation (17) for the analysis. Substituting 
into equations (18) and (19), and writing equation (20) in the linearized non-iterative form yields 
the TWS algorithm linear algebra statement expressed in the finite difference form 

L,(Qj) = [l - acA, + (6 - Y C ~ ) ~ ~ ]  --$ + [A, - Pcd2 + p ~ ~ d ~ A , ] Q j = 0 .  

[ 1 +  aAd0 + (6 - aB)d2 + C ~ & ~ A , ]  AQY" = - c[A, - ctDd2 + a,d2A,] Q;. (3 1) 
For equation (31), AQ;+' E Q;+' - Q;, and in terms of the original Taylor series parameters 
(equations (7) and (8)) 

a A  

aB 

c [ O  - (E/2) - Y(AtaX/3)], 

-c2[(Y/6) + 8{(8/2) + fi(Atax/3)>l, 
ac = 8c3ji/6, 

aD [(8/2) + fi(Acax/3)l 9 
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aE = c2ji/6 , 
c = aAt/Ax . 

Fourier stability analysis 

The Fourier series representation of the analytical solution q(x, t) to equation (22) is 

where oj = 24Aj is the wave number of the jth component of wavelength Aj, aj is the temporal 
frequency and i = ,/ - 1. By virtue of the linearity assumption, the analysis can focus on only thejth 
Fourier mode qi. Substituting the corresponding expression into equation (22) yields aj = - ami. 
Hence, the typical Fourier term of the exact solution to equation (22) can be written as 

q(x, t )  = Qeiw(x-at). (34) 
Assuming that the discrete approximate solution qh(x, t )  behaves in a similar manner, for the 

typical mode assume 

qh ( jAx, t )  = Qeio(jAx - 71) , (35) 
where 7 3 p + iz, and p and 5 are real functions. Substituting this definition, and multiplying 
by e-iW' produces 

(36) qh(jAx, t) = Qe wr[8+i(a-n]eio(jAx-or) 

Hence, the functional form for the semi-discrete phase error e" at x = jAx is eh = @(a - Bt, and the 
artificial dissipation mechanism is embedded in 5. 

After an elapse of time increment At, the discrete approximate solution Fourier mode is 

qA( jAx, t + At) QelubAx-W+Arll 

QelwOAx - (37) - - e-~wyAr - 

= gqh(jAx, t). 
Thus, the discrete solution Fourier mode amplification factor g is 

g r e -  iopAr = e-iw(fl+i8)Af 

= edAr [ cos (oFAt) - i sin (opAt)]. (38) 
From equation (38), the phase speed Q, of a Fourier mode, after an elapse of one time interval At, is 

Further, the discrete solution phase error is defined as eA = oAt(a - B. 
Therefore, algorithm stability and dissipation/dispersion error mechanisms are characterized by 

the solution for 7 = + i5. From equation (37), 4;'' - q; = (g - 1)g;; hence, using equation (31), 

- c[A, - a,d2 + a,d2A,]eimud") 

[ 1 + aAAo + (d - aB)d2 + acd2AT]e'm~A') * 

g - 1 =  



A TAYLOR WEAK-STATEMENT ALGORITHM 497 

' (42) 
c( [2aD( cos m - I) + 2( sgn a)aE( cos m - - i( sinm)[ 1 + 2aE( cos m - I)]) 

g - 1 =  
[ 1 + ($ - 2ag)( cos m - 1) - 2( sgn a)a,( cos m - I ) ~ ]  + i( sin m)[aA + 2a,( cosm - l)] 

where (sgn a) is the sign of the flux vector Jacobian a. 

fully discrete solution amplification factor g is 
Expanding the terms in equation (42) in a Taylor series in m (see Appendix 11) the solution for the 

g = 1 + C C  - a1m2 + (A - Boal)m4 - ((71 - Y O ~ A  - Bo(B1- Boal))m6 + o(ma)I 

- ic[m - (B2 - Bo)m3 + ( ( y 2  - yo)  - Bo(Bz - P o ) W  
- ( (p2 - poi - Y ~ ( B ~  - a,) - bo(r2 - yo)  + P ~ P ,  - Po))m7 + o(m9)1. (43) 

The coeficients ao, al,  Po,. . . , p 2  in equation (43) are related to the parameters aA, . . . , aE (hence, &,r, 7, p, 8) of the Taylor weak statement as 

-&aB -&( sgn a) ac + AaE 7 (44W 
P O =  --;-2aB+3 1 

yo = -$a: - h A a C  - (sgna)a, + a: -+a, +A, 
po = -&a: + i a i  - af - 4aAac + (sgn a)aBac 

(444 

It appears appropriate to impose constraints on the Taylor weak statement parameters 
aA, . . . , aE, such that the fully discrete approximate solution amplification factor g = ,-jayat 

matches as closely as possible the analytical amplification factor e-jwat. Since 

(45) 

_- llgbaB-+(sgna)ac+&j. 

- imc - - 1 - icm - +c2m2 + iic3m3 + . . . , 

for equation (43) one arrives at the following definitions: 
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It remains to separate out the Fourier series solution expansion for the real and imaginary 
components of 7 = B +  i8; recall equation (35). Since g = e-'OTAr then e-iw(7-a) = geioaAt, or 

ewAt[8-i(fl-a)] = geicnt. (47) 

From equations (45) and (46), the right side of equation (47) yields 

RHS (47) = g [ ]  

1 +m4[--g c4 a1c3 + - - ( 8 2  - Po)c2 + (B1 - Poa1)c 

c5 a1c4 c3 
+im5 -- (02  - B0)T + (P1 - B0a1)c2 [ 3 0 ' 6 -  

Since the left side of equation (47) is of the form 

LHS (47) = 1 + o(At)[8- i(p- a)], 

(48) 

(49) 
equations (48) and (49) yield the required estimates of the fully discrete solution dissipation error 
o(At)8  and phase error o(At)(a - fi  as 

c3 alc2 o(At)8= c { m2[i - a l l  + m4[ -8 + 7 - 
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The leading terms in equations (50) and (51) are generally coincident with those reported in the 
literature as developed using local Taylor series expansions for fully discrete finite difference 
algorithms, e.g. donor cell, Lax-Wendroff, etc. which correspond to special cases of equation (3 1). 
The entire family of Taylor weak-statement algorithms, expressed by equation (3 l), has as 
arbitrary parameters the set of coefficients E, F,y, ji (recall equations (1  1) and (12)). Equation (44) 
defines the correlation between these parameters and 6, through aA, . . . , aE in equation (32), to the 
theoretical error estimates given in equations (50) and (51). 

DISCUSSION AND RESULTS 

The Taylor weak-statement finite element algorithm for a hyperbolic conservation law system has 
been derived and the linear basis implementation completed in equations (31) and (32). Choices for 
E, /J, 7, ji and 6 define a specific implementation, and several families of finite difference and finite 
element algorithms can be established in this manner, as summarized in Table I. In this section, the 
associated dissipation and dispersion error solutions are characterized, from equations (50) and 
(51), and the performance of each algorithm is directly compared for four test cases. These 
elementary but definitive test cases correspond to a steady and an unsteady, one-dimensional 
inviscid (or viscous, as required) problem, each with a linear (a = constant) and the Burgers' non- 
linear (a = q) flux vector Jacobian. In all cases, the exact solutions are known for unequivocal 
comparison. 

The test case solutions are graphically summarized in Figure 1 for the governing model 
equations 

q I  

a) Linear, unsteady c) Non-linear, unsteady 

L 
b) Linear, steady-state 

q 
1 

0 

-1 

. x  I X 

d) Non-linear, steady-state 

Figure 1 .  Model problem test cases: (---) initial condition, (-) exact solution 
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and 

where E is the viscosity coefficient. The linear unsteady case corresponds to uniform rightward 
propagation (a > 0) of a full phase sine wave, the inviscid ( E  = 0) analytical solution for which is 
exact preservation of the initial condition (Figure l(a)). The steady linear test case is (must be) 
viscous ( E  > 0), and is obtained numerically as the unsteady evolution from an interpolation 
between the end points of the analytical steady state solution to equation 52(a), which is 

q(x) = ePd(x/L) - 11, 

where Pe = ~ L / E  is the Peclet number. For E > 0, the expressions inside the brackets for ug and U, 
(equation 32) are augmented by the ‘cell Peclet number’ terms &/aAx and ~ / a A x ,  respectively. The 
solution slope in the wall layer solution is controlled by Pe, as illustrated in Figure l(b). 

Both non-linear test cases are specified as inviscid ( E  = 0). The unsteady case (Figure l(c)), 
corresponds to a right-travelling square wave propagating into a stagnation region (q = 0) with 
(exact) solution group velocity u = q/2. The steady case is the intersection of two square waves 
with analytical solution q = f 1 at the sides of a stationary shock of strength A4 = 2 (Figure l(d)). 
For both cases, the initial conditions are illustrated by dashed lines, and the exact solution is the 
solid line. 

(53) 

Bubnov-Galerkin finite element algorithm 

The basic (Bubnov-) Galerkin finite element algorithm is constructed for the model differential 
equation (equation 52) by omitting all additional terms in the Taylor series, equation (10). Thus, 
u = 0 = f l =  y = p: hence 

and 

via equation (32). From equation (44), one thus obtains 

Hence, the discrete amplification factor (equation (42)) is 

ic( sin m) 
1 + +( cos m - 1) + ice( sin m) 

g = 1 -  

and 

- 1 ++(cosm- 1)-ic(l -e)(sinm) 
’ - 

1 + +( cos m - 1) + ice( sin m) 

O2 + O3 m4 + ... > I  



502 A. J. BAKER A N D  J. W. KIM 

o(At)(a - = c[c2((S- 8 + o2)m3 + --I. (54e) 

From equation (54c),8 = 1/2 appears as the optimal choice, since 191 = 1 for all c and m. Further 
[(1/2) - 81 = 0 = [ - (1/8) + (8/2) - O2 + 03] for 8 = 1/2 (equation (54d)), hence the Galerkin 
algorithm is dissipation-free to O(m6) and the dispersion error coefficient is c2 rn3/12. For 8 = 0, 
equation (54d) indicates that the algorithm is unstable, since cm2/2 >O. This is of no real 
consequence, however, since the sign of this term changes for the stability analysis completed using 
the discrete solution rather than the exact solution for q”, leading to equation (40). Conversely, for 
8 = 1, the dominant dissipation term is O(m2); hence the Galerkin algorithm is first order accurate 
with large damping. 

Figure 2 summarizes the Galerkin algorithm results for the four test problems. For each graph, 
the solid curve is the analytical solution, and the symbols are the nodal discrete approximate 
solutions. The short wavelength phase dispersion and relative absence of artificial dissipation are 
evident for the travelling wave (Figure 2(a)), for the solution computed for Courant number (non- 
dimensional time step) c = 0.8( = aAt/Ax). Larger and smaller levels of Courant number aggravate 
and diminish, respectively, this dispersive character, as predicted by equation (54e). Definition 
of 8 = 1 introduces a large dissipation level which smooths the dispersion error (Figure 2(b)). 
For the steady linear problem, a Peclet number of Pe = 40 interpolates the non-zero portion of 
the exact solution over 2 cells of a 16 cell uniform mesh, and the Galerkin algorithm solution 
is non-monotone (Figure 2(c)). For any Pe > 50, the exact solution span is interpolated only 
over one cell. At Pe = 180, the 2Ax oscillation has polluted the entire solution (Figure 2(d)), and 
the steady-state is independent of the definition for 8. 

The 8 = 0 and 8 = 1/2 Galerkin forms are basically unstable for both non-linear test problems. 
The order m2 term in 8 yields the sole dissipation mechanism for 8 > 1/2. Figure 2(e) shows 
the unsteady, inviscid non-linear Burgers’ result obtained using 8 = 1. The 2Ax oscillations behind 
the shock, which are primarily induced by the downstream stagnation initial condition (q = 0) 
are rather severe. Figure 2(f) confirms the oscillation reduction for the (non-stagnation) 
downstream initial condition q = and for 0 = 1. However, the choice for 8 bears no impact 
on the non-linear, steady-state problem solution, (Figure 2(g)), the results for which firmly verify 
the inherent instability intrinsic to the classic Bubnov-Galerkin finite element algorithm. 

Donor-cell upwind finite diference algorithm 

It is convenient to reference a class of non-Bubnov-(but also non-Petrov-)Galerkin finite 
element algorithms to the donor-cell upwind and Lax-Wendroff finite difference algorithms. The 
donor cell (explicit) algorithm” is defined (equation (3 1)) by the constraints (equation (32)), 

a,, = 0 = ac = aE = 8, 

ail = $9 

where the definition for aB removes the mass matrix contribution (recall equations (29)-(31)). 
Thus, for the Taylor weak statement, a = 0 = y = p and /3 = (sgna)/c. In equation (44), one obtains 
for the Fourier analysis parameter set 



A TAYLOR WEAK-STATEMENT ALGORITHM 

-5 

0.0 0.2 0.4 0.6 0.0 1.0 

(a) 

0 0 0  0 0 0 0 0 

, I '  l [ I l l  

1.5 

I .o 

0.5 

0.0 

0.5 

1.5 

1.0 

0.5 

0.0 

-0.5 

3 
P 
I 
1 0.0 0.2 0.4 0.6 0.0 1.0 

1 1 ' 1 1 1 '  

0.0 0.2 0.4 0.6 0.0 1.0 
(0 )  

503 

00 
0 0  

0 O O  

0 
0.0 oooooooooooo 0 

00 
00 1 0 

1 O 00 
000 

-0.2 . ~ ,  
0.0 0.2 0.4 0.6 0.0 1.0 

(b) 

0 

00 0 2  0.4 0.6 0.0 4.0 

(4 

1.5 

1 .o 

0.5 1 
0.0 I I 1 1 1 

0.0 0.2 0.4 0.6 0.0 1.0 

(f) 

~ o o o o o o o o  



504 A. J.  BAKER AND J. W. KIM 

The resultant Fourier solution functions (equations (43), (50) and (5 1)) are 

g = 1 + ~ [ ( C O S  m - 1) - i (sin m ) ] ,  (554 

(554  o ( A t ) $ =  C [ ~ ( C  - l)mz + ...I, 
o ( A t ) ( a  - p) = c[i(2c2 - 3c + l)m3 + * * . I .  

Since the upwind donor cell algorithm exhibits the ‘unit CFL property’, the optimal Courant 
number is unity. Stability requires c < 1, and for c < 1 the algorithm is first order accurate. 

Figure 3 graphs the test case results. The unsteady linear problem solution at  c = 0.8 
(Figure 3(a)), confirms the inherent large artificial dissipation present for any c < 1. The steady- 
state linear solution at Pe = 40 also confirms excess dissipation, (Figure 3(b)). The unsteady, 
stagnation-penetrating non-linear problem solution is not monotone at c = 0.32 (Figure 3(c)), with 
the shock interpolated across three cells. In distinction, the solution is monotone and diffuse when 
a stagnation zone (point) is not present (Figure 3(d)). The non-monotone character persists for the 
steady state shock with nodal stagnation point (Figure 3(e)), which exhibits a quite modest one-cell 
over- and under-shoot. 

Lax- Wendroff finite difference algorithm 

The consequential difference between the donor cell and Lax-Wendroff algorithms in 
equation (31) is contained in ciD Lax-Wendr~ff’~ is recovered by the definitions (equation (32)) 

ciA = 0 = cic = ciE = 8, 

cig = ;, 

C 
c i D = - .  

2 

Thus, for the Taylor weak statement, cl = 0 = 7 = ,ii and p= 1; for equation (44) we thus have 

C 
a , = ? ,  P o = O ,  P z = d ,  

1 C 
P -- 7 Y o = O  9 Y Z = m ,  ‘ -24 

1 C 
Y --7 Po=() ,  P Z = 2 0 ?  ‘ - 720 

and for equations (43), (50) and (51) 

g = 1 + cz(cos m - 1) - ic(sin m), 

(c’ - l )m4 + . . . , 1 
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Figure 3. Donor-cell finite difference algorithm test problem solutions: (a) Linear, unsteady, c = 0.8; (b) linear, 
steady-state, Pe = 40; (c) non-linear, unsteady, c = 0.32; (d) non-linear, unsteady, c = 0.32, no stagnation; (e) non-linear, 
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w ( A t ) ( a - r ) = c [ ; ( l  - c2 )m3  +. . . I .  (5W 
The Lax-Wendroff algorithm also exhibits the unit CFL property, and for c c 1 it is second-order 
accurate, a definite improvement over upwind donor-cell. 

Figure 4 summarizes the test case results. The unsteady linear solution at c = 0.8 is much 
superior to the donor cell results regarding artificial dissipation effects, although a significant 
lagging phase dispersion wake is present (Figure *a)). The steady linear solution at Pe = 40 is just 
distinguishable from the analytical solution (Figure 4(b)). The unsteady non-linear solution at 
c = 0.32 is non-monotone with a pronounced lagging overshoot (Figure 4(c)). Similarly, an 
oscillation is generated in the steady non-linear problem solution, extending about 2Ax each side of 
the shock (Figure 4(d)). 

Higher-order Galerkin finite element algorithms 

There have recently been published three Galerkin-type finite element algorithms (in the sense 
that the test and trial spaces are identical, and no arbitrary coefficients are involved) that constitute 
select retention of higher order terms in the Taylor series conservation law restatement 
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Figure 4. Lax-Wendroff finite difference algorithm test problem solutions: (a) linear, unsteady, c = 0.8; (b) linear, 
steady-state, Pe = 40; (c) non-linear, unsteady, c = 0.32; (d) non-linear, steady-state 
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(equation (1  1)). The Euler-Taylor-Galerkin algorithm of Donea’. I4-l6 constitutes the choices 
ii = 0 = ji and /I= 1 = 7 in equation (lo), and 8 = 0 in equation (18). Thus, for the Taylor 
weak-statement algorithm (equation (3 1))  one has the following definitions for the parameter 
(equation (32)): 

aA = 0 = aC = aE = 8, 

C 

aD=2*  
Conversely, the Euler-characteristic-Galerkin algorithm of Morton’,” stems from the 

definition c7 = 0 = 7 and p= 1 = ji in the Taylor series (equation (10)) and 8 = 0 in equation (18). 
Thus, for the constraint IcI  < 1 (due to the selected upwinding definition (equation (27)), this finite 
element algorithm is extracted from the Taylor weak statement (equation (3 1)) by the parameter 
definitions (equation (32)) 

aA = 0 = ag = ac = 0, 

(584 
C 

a, = 5, 

aE=6* 
C2 

Note that the definitions in both equations (57a) and (58a) correspond to an exact higher order 
Taylor series, in distinction to the donor cell definition. 

Viewing equations (57a) and (58a), one expects only subtle performance distinctions between 
these algorithms. Completing the algebra within equations (44), (42), (50) and (5 l), for the Euler- 
Taylor-Galerkin (ETG) algorithm one obtains 

- c 2  1 
6 3  &=--+-, 

c c3 c4 c2 1 c2 1 
f i t = - - -  y ----+- y 2 = 2 4 + 5 j 9  8 12’ ‘ -36  12 8 ’  

l l c  c3 5c4 1 1 2  1 -2 1 1  
y l = m - E ’  Po=1080-1080 + - 9  180 P 2 = 2 4 0 + 2 5 2 0 ’  

and 
c2(cos m - 1)  + ic(sin m) 

g =  ’ + 1 + ( 1  -c2)(cosm- 1)/3 

J o(At)F= c -(c’ - l)m4 + 1 2E4 
o(At ) (a  - p) = c[&l - 5c2 + 5c4)m5 + . . . I  

Similarly, for the Euler-characteristic-Galerkin (ECG) algorithm 
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C 
m 1 = 2 ,  

c2 1 
6 3  

Po=+,  &=-+-,  

c c2(sgna) 5 2  1 
p - _ -  12 , Y o = & ,  y 2 = - + - ,  ‘ - 8  72 20 

c2 11 
72 2520 

I l c  cZ(sgna) 1 
3 p o = m ,  pz=-+--, y --+ ‘-720 36 

and 
g =  1 +[c(cosm- 1)+c3(cosm- 1)/3]-ic(sinm)[l +cZ(cosm- 1)/3], (584 

o(At)(a-p)=c[&(l- 1 0 ~ ~ + 1 5 ~ ~ - 6 ~ ~ ) m ~ + . . . ] .  (584 
Therefore, both of these higher-order Galerkin algorithms also possess the unit CFL property, 

and for c < 1 are third-order accurate. Interestingly, for unit Courant number, the ETG algorithm is 
fifth-order accurate, whereas the ECG formula is sixth-order (the coefficient of m5 also vanishes). 
Figure 5 summarizes the test case results for the ETG algorithm, and Figure 6 contains the linear 
test case results for the ECG algorithm. (A somewhat complicated ‘recovery’ process is required for 
the ECG algorithm, when applied to shocked flow predictions, the coding of which was deemed 
unnecessary for present purposes.) For ETG (Figure 5(a)) the linear, unsteady solution at  c = 0.8 is 
very accurate with no overshoot, minimal phase distortion (the nodal values are almost 
equidisposed across the wave), and with only the slightest indication of both a leading and lagging 
dispersion error. The linear steady-state ETG prediction is virtually identical to the Lax-Wendroff 
prediction, as expected since mD = c/2 in both cases. The unsteady, non-linear ETG solution 
(Figure 5(c)), is non-monotone, with both leading and lagging nominal 2Ax oscillations. The 
steady, non-linear solution is comparable to Lax-Wendroff, with a notable increase in oscillation 
magnitude. For the linear test problem comparisons, the ECG algorithm results for both the 
(c = 0.8) linear unsteady case (Figure 6(a)), and the steady linear solution (Pe = 40, Figure 6(b)), 
are virtually indistinguishable from the ETG results. 

Another form of a Taylor-Galerkin finite element algorithm has been developed by the CFD 
group at Swansea. Originally conceived as a Galerkin algorithm with added (Lapidus) 
dissipation18-” a recent reformulation has identified the underlying Taylor series conservation 
law statement.” The Swansea-Taylor-Galerkin (STG) finite element algorithm is an explicit two- 
step procedure, akin to Lax-Wendroff, that constitutes retention of a second term in the Taylor 
series, i.e. p= 1 and Cr = 0 = y =  ji in equation (lo), and 8 = 0 in equation (18). In terms of the 
parameters of equation (32), the STG algorithm is defined by 

o = ag = mc = mE = e, 
C 

aD = 2‘ (594 

Thus, it is Lax-Wendroff algorithm with a mass matrix (recall that mg = 1/6 in equations (%a) and 
(56a) removes the mass matrix contribution in equation (3 1 )  for Lax-Wendroff and donor-cell). 
With the definitions in equation (59a), the parameters of equations (44), (50) and (51) for the STG 
algorithm are 

C 
a 1 = 2 ,  P o = + ,  8 2 = 3 ,  
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Figure 5. Euler-Taylor-Galerkin algorithm test problem solutions: (a) linear, unsteady, c = 0.8; (b) linear, steady-state, 
Pe = 40; (c) non-linear, unsteady, c = 0.16; (d) non-linear, steady-state 
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Figure 6. Euler-characteristic-Galerkin algorithm test problem solutions: (a) linear, unsteady, c = 0.8; (b) linear, 
steady-state, Pe = 40 
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c2(cos m - 1) - ic(sin m) 
1 + (cos m - 1)/3 g = 1 +  9 

o(At )F=  c -(3cZ - l)m4 + 1 2C4 
w(At)(a-F)=c[ - ( ~ ) m 3 + ~ ( l - ~ c z + 8 4 c 4 ) m s + ~ ~ ~  1 . 

For stability, equation (59d) requires c < 1J3 z 0577, a more severe constraint than that 
imposed by the choice of explicit integration. Figure 7 summarizes the STG algorithm test case 
problem solutions. The linear unsteady solution (Figure 7(a)), for c = 0.4 confirms a modest level 
of artificial dissipation and significant leading phase error in distinction to Lax-Wendroff, 
(Figure 4(a)). This solution is notably poorer than both the ETG and ECG solutions, even though 
use of c = 0.4 is a less severe test and requires twice the number of integration time steps. The linear, 
steady-state solution (Figure 7(b)), is indistinguishable from the entire class of Lax-Wendroff 
algorithms. In Figure 7(c) and 7(d), the non-linear unsteady and steady solutions are essentially 
indistinguishable from the ETG and Lax-Wendroff results, as the theoretical analysis predicts. Of 
course, the unsteady solution at c = 0.16 requires about twice the number of integration steps for 
accuracy equivalent to Lax-Wendroff. 

The family of Petrov-Galerkin algorithms 

In distinction to the higher-order Galerkin methods, there have been published a number of 
so-called Petrov-Galerkin finite element algorithms, characterized by the choice of a test space 
distinct from the trial space; recall equations (13) and (14). Wahlbin,’ Dendy’ and Raymond 
and Garder3 each published an unsteady dissipative Petrov-Galerkin algorithm in the mid-1970s. 
Hughes and Brookss in 1979 published a steady-state algorithm termed ‘Streamline upwind 
Petrov-Galerkin (SUPG)’ and applied it to convection-diffusion problems. Tezduyar and 
Hughes” later extended the SUPG method to the Euler equations; Morton and Parrott6 
generalized to unsteady flows with an Euler-Petrov-Galerkin (EPG) algorithm, and Baker and 
Soliman’ published an implicit unsteady Euler algorithm using a modified Raymond-Garder 
formulation. For these various algorithm constructions, viewing columns in Table I confirms 
the minimal distinctions amongst the class, which is uniformly characterized by introduction 
of an ‘artificial’ viscosity parameter v eligible for definition. 

The explicit Euler-Petrov-Galerkin (EPG) and implicit Raymond-Garder (RG) formulations 
characterize the class; hence the direct comparison is of interest. The EPG algorithm is defined 
within the Taylor series, (equation (1 1)) by the constraints ti = 0 = 7 = ji and /J# 0. Within 
the Taylor weak statement, (equation (31)), the parameter set (equation 32) for EPG becomes 

v(sgn a) 
U D =  ~ 

2 .  

Note that the 1/6 in uB eliminates the mass matrix contribution in equation (31). The RG 
algorithm is established within the Taylor series, (equation (1 l)), by the specification ti = /J 
and 7 = 0 = ji. Thus, the RG parameters in equation (32) are 
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Figure 7. Swansea-Taylor-Galerkin algorithm test problem solutions: (a) linear, unsteady, c = 0.4; (b) linear, steady-state, 
Pe = 40; (c) non-linear, unsteady, c = 0.16; (d) non-linear, steady-state 

aA = c0 - (sgn a)v, 
ag = c0(sgn a)v, 
ac = 0 = aE, 
aD = (sgn a)v. 

Completing the evaluations in equation (44) for EPG yields (for sgn a = l), 

V 
a1 =j, 

V 
B O  = T ?  

v(v + 1/2) v(v + 1)  cv + (1/5)1 
B 1 =  12 9 Y O = T 9  Y2= 24 9 

(60b) 
v(l0v + 1) (5v2  + v + 4) 1 1  (1  - v )  

9 P o =  1080 9 

cL2=--- 
y1 = 720 2520 240 . 

Therefore, the Fourier solution expressions for EPG become (equations (42), (50) and (5 1)) 

c(v( cos rn - 1) - i( sin rn)) 

1 +-(cosrn- 1) 
g = 1 +  

V 
? 

3 
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Z 
0 (At) $ = c { $c - v)mz + [ v (c 4 6 2 4  + c + L) - 1 2 6 8  - c - 21 m4 + . . .], (60d) 

(60e) w(At)(a - f l )  = c [ ( l  - 6 3  + - c z  - v(3c+1)) 6 m3 + ... ] . 
Completing the evaluations in equation (44) for RG yields (for sgn a = l) ,  

ce 
a1 =T’ 

p1 = ce(+ - v2) - -, 

po = 4 - ( C e y  - v2, 

yo = (ce)2(vz - 4) + - + - - -, V cev 1 v2 
12 6 18 3 

(61b) 
z[v2 -(4/15)] c8v (1 - 8v2) 

180 ’ +-+ 6 36 

[ (1 1/63) - v’] 
pz= 4o 

Hence, for equations (42), (50) and 

c[2v( cos m - 1) - i( sin m)] 
1 + [(1/3)-2c8v](cosm- l)+i(sinm)(cO-v)’ g = 1 +  

1 + [(1/3) + 2cv(l - O)](cosm - 1) - i(sinm)(l + v - c8) 
(6 1 c) - - 

1 +[(1/3)-2~8v](cosm- l)+i(sinm)(cd-v) ’ 

c[(1/2)-elm2+ 

o(At)(a - p) = c[c2(B2 - 9 + +)m3 + ...I. (6 1 4  
Although the appearance of terms in Table I conveys the impression that these two algorithms 

share much in common, equations (60) and (61) firmly quantify the substantial distinctions that 
exist. The EPG algorithm is unstable for c > v, and only first order accurate unless v = c. For 
v = c, stability requires that c < 1/3 for positive damping in the order m4 term (equation (6d)). 
Finally, v is bounded below unity from the original definition of the test space for EPG. 
Conversely, the RG algorithm is identical to Bubnov-Galerkin to order m4, and for 8 = 1/2 is 
third-order accurate and stable independent of v. For 8 =  1/2, damping in the m4 term is due 
only to v and is positive for any v>O. The definition ~ = ( 1 5 ) - ” ~ ,  as originally determined 
‘optimal’ by Raymond and Garde~-,~ yields their predicted value 8= ~(Ax)~/12,/15. For this 
value of v, their analysis incorrectly predicted higher order phase accuracy, based on a 
semi-discrete Fourier analysis. 

The computed test case results are summarized in Figures 8 and 9 for the EPG and RG 
algorithms, respectively. For the linear unsteady problem, the EPG solution for c = 0.32 = v 
shows a large lagging phase yielding a distorted dissipation and a large amplitude trailing wake 
(Figure 8(a)). Setting v = 0-5 and c = 0.32 (the stability limit) introduces a large dissipation on 



A TAYLOR WEAK-STATEMENT ALGORITHM 513 

1 .0 

a5 

0.0 

-0.5 

-1 .o 
0.0 0.2 0.4 0.6 0.0 1.0 

0.5 

0 .0 

0.5 

00 02 04 06 00 10 

00 02 04 06 00 10 

( C )  

2 

1 

0.0 rl 
0.5 

0.0 0.2 0.4 0.6 0.0 1.0 

(d) 

-2 l ~ & ~ l ~ l ~ l  

0.0 0.2 0.4 0.6 0.8 1.0 

(el 

Figure 8. Euler-Petrov-Galerkin algorithm test problem solutions: (a) linear, unsteady, c = 0.32, v = 0.32; (b) linear, 
unsteady, c = 0.32, v = 0.5; (c) linear, steady-state, Pe = 40, v = 0.5; (d) non-linear, unsteady, c = 0.32, v = 0.95, 0 = 1; 

(e) non-linear, steady-state, v = 0.95. 

top of the large phase error (Figure 8(b)). For the steady problem at Pe = 40, the v = 0.5 solution 
is in close agreement with the analytical solution (Figure 8(c)). For the non-linear unsteady 
problem (Figure 8(d)), the EPG solution for v = 0.95, c = 0.32 (as stabilized using 8 = 1) yields 
an almost monotone but diffused solution. The steady, non-linear EPG solution for v = 0-95 
appears essentially identical to donor cell, in agreement with its being first-order accurate. 
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Figure 9. Raymond-Garder finite element algorithm test problem solutions: (a) linear, unsteady, 0 = 0.5, c = 0.8, 
v = I/J15; (b) linear, steady-state, 0 = 0.5, 1.0, Pe = 40, v = I /  J15; (c) non-linear, unsteady, 0 = 1.0, c = 0.32, v = 1/,/15; 

(d) non-linear, steady-state, 0 = 0.5, 1.0, v = 1/,/15; (e) non-linear, steady-state, 0 = 0.5, 1.0, v = 2/J15 

The RG algorithm solution for the linear unsteady problem at c = 0.8, for 8 = 1/2 and v = l/,/ 15 
(Figure 9(a)) shows no over- or undershoot, with the same lagging phase distortion but reduced 
trailing wake when compared to Bubnov-Galerkin (Figure 2(a)). The steady linear RG solution 
is independent of 8, and for v = 1/,/15 and Pe = 40 is in good agreement with the exact solution 
(Figure 9(b)). The non-linear, unsteady solution for c = 0.32 shows modest overshoot for 8 = 1, 
v = 1/Jl5, which is also an improvement over Bubnov-Galerkin; recall Figure 2(e). The unsteady 
non-linear solution is also &independent, and Figure 9(d) and 9(e) show the influence of the 
level of v in modifying the non-monotone character between that of Lax-Wendroff and donor cell. 
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SUMMARY AND CONCLUSIONS 

A Taylor weak-statement finite element numerical solution algorithm has been derived for 
application to hyperbolic conservation law systems in computational fluid dynamics. For a linear 
basis implementation, and a Galerkin test space definition, a theoretical stability analysis has 
been completed for a one-dimensional scalar equation. The results of this analysis have permitted 
direct theoretical comparison of a variety of dissipative algorithms published in the finite difference 
and finite element literature. Linear and non-linear, unsteady and steady test problems were 
defined, and the various dissipative algorithm solutions directly compared to quantify relative 
performance. 

A critical assessment of these results confirms that none of the published algorithms 
satisfactorily meets the multiple requirements of accuracy, efficiency and monotonicity for the 
entire test problem family. This is not surprising, since none of these algorithms were specifically 
constructed according to a norm that would guarantee, or even promote, such optimum 
performance. It is quite evident that the Taylor weak-statement, based on a Galerkin weighting 
criterion, does provide a functional form upon which such an optimized analysis could be 
performed. Such a project is under way, as well as an extension of the analysis framework to 
encompass an even broader CFD algorithm class, including those characterized by ~pwinding,’~ 
flux vector ~plittings,’~ flux and with fourth-order added dissipation mechanisms.” 
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APPENDIX I 

Consider the evaluation of the integral (equation (27)) in the form 

se(Ee)Ese(h:  jne {Nz}x{N1}zxdx), 

where {N2} is the quadratic basis function of the test space and {N,} is the linear basis function of 
the trial space. Defining the natural co-ordinate [ = f/2he, where he is the measure of the one- 
dimensional linear basis element. one obtains the relations 
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- 3 + 4 c  
{N2}x=- 4-81: 9 

2he { - 1 + 4 d  

The integral defined in equation (62) can be re-expressed using integration by parts, yielding 

{N*}x{~l}:xdx = he3 {N,},{N,}:.fid~ - h,3 {N2}xx{~1Edx.  (63) 
h,3 1. 6.. Le 

in regions of smooth flow, the surface integral in equation (63) is usually assumed to vanish. Since 
{ N 2 }  requires three nodal coefficients for interpolation, whereas { N ,  } needs only two coefficients, 
expand the rank accordingly to yield 

{ 1 - 26,21;, 0}, for a, > 0, 
{NilT= { {  0, l  - 25,2[}, for a, c 0, 

where a, is the element convection velocity. Referring to Figure 10, and for a uniform discretization 
(he = constant), the evaluation of equation (63) is computed as follows: 

Case (i): a, > 0 

1 -1 0 
=he[-, 1 -1 2 01 0 

Case (ii): a, < 0 

= - h : j z &  { -i) i { O  - 1  l}dx 

elem. # 1 (e-  1) 1 ( e l  1 ( e + V  1 (e+2)  1 
1 1 1 1 1 )  

node# j -2  j -1 j j + l  j + 2  

Figure 10. Generic discretization of the x-axis 
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(65) 

Hence, using { N z }  and integration by parts, we obtain the definition given "efore as equation (27) 

Alternatively, since the integral 

vanishes identically, as {N, } cannot support two x-derivatives, we must have 

{N,},{Nl}:.fid~ = {~z lxx{~1} :dx .  
SQ 

For a, > 0, 

For a, < 0, 

= h , k  0 - 1  2 -! 
0 - 1  

which again recovers equation (27). 

freedom (QX}, defined as (recall Figure 10) 
As a final construction using only {Nl}, consider introduction of a new element degree of 
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For constant a, the last term in the Taylor weak statement (equation (25)) can then be written as 

Equation (71), upon assembly over the element pair sharing node j (Figure lo), for a uniform 
discretization then yields the expression d2 ATQj as follows; for a > 0 and on element e, 

-Qj-2+2Qj-l-Qj 
Qj-2-2Qj-,+Qj 

whereas for the adjacent element, e + 1, 

Thus, upon assembly of the element contributions, we have for the subject term 

1 
S , e  + 1 In, {NI >x( {NI I' {Q>e)xx dx = { Qj - 2 - 3Qj- 1 + 3Qj - Qj + i } T, 

which, upon extraction of a common multiplier Qj confirms the form of equation (29) as 

Se ( E e  ) = (74) 

Q.E.D. 

APPENDIX I1 

From equation (42), we write the amplification factor g as follows: 

g - 1 = c(R2 - iZ2)/(R1 + ill) 

=cC(R,R2 - 1112) - W l Z 2  + R2Zl)IAG + m, (75) 
where 

R ,  = 1 + (f - 2a,)(cos m - 1) - 2(sgn a)ac(cos m - 1)2, 

I ,  = (sin m)[a, + 2ac(cos m - l)], 
R2 = 2a,(cos m - 1) + 2(sgna)a,(cos rn - 1)2, 

I ,  = (sin m)[l+ 2a,(cos m - l)]. 

One has the following series expansions for sines and cosines 
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mz m4 m6 cosm- 1 = -- 1 --+---+... "'( 2 12 360 20,160 

mz m4 m6 m8 sinm=m 1 --+---+-+... ( 6 120 5040 362,880 

(sinm)(cosm- 1 ) =  2 (77) 

Expanding R, ,  I , ,  R ,  and I, (equation (76)) in terms of powers of m then yields 

2160 360 12 

1, = - ($+ . 4 m 3  + (2 120 + s ) m 5  4 - (5 5040 + 40 s), + .. . , 

+@gnu)- m 8 -  ..., +[& 160 "E 1 
I , = m - ( & + a E ) m 3 +  (1:0 -+- Ix4b) m 5 -  ( - 5 d 4 0 + $ b 7  + * * * *  

Thus, we can establish the expressions, 

R: + I :  = 1 - pornz + yom4 - porn6 + . . . , 
R,R,  - I , I ,  = mZ( - a, + Blm2 - ylm4 + a * . ) ,  

R , I ,  + R,Il = m(1 - B2mZ + y2m4 - p2m6 + . a * ) ,  

The parameters B, y, p, . . . then lead to the definitions 

R,R,  - I l l ,  - m2( - u1 + film2 - ylm4 + . a * )  

1 - Born2 + yom4 - porn6 + - - a  

- 
R: + I:  

= - almZ + (B1 - Bo.l)m4 - C(r1 -YO", )  - B o ( B 1 -  B0a1)Im6 + o(m8) ,  (80) 
R , I ,  + R,I ,  - m(1- B2mZ + y2m4 - p2m6 + ...) - 

R: + 1: 1 - Bornz + yom4 - porn6 + .. 
= m - (Bz - Po)m3 + Cb2 - y o )  - Bo(Bz - Po)im5 
- C(P, - pol - y 0 ( p 2  - - B ~ ( Y ~  - yo)  + B2(B2 - Bo)im7 + o(m4 .  (81) 

Substitution of equations (80) and (81) into equation (75) then yields equation (43): 

(79) 
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(43) 
Q.E.D. 
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